Quantifying motion in 3D is important for studying the behavior of humans and other animals, but manual pose annotations are expensive and time-consuming to obtain. Self-supervised keypoint discovery is a promising strategy for estimating 3D poses without annotations. However, current keypoint discovery approaches commonly process single 2D views and do not operate in the 3D space. We propose a new method to perform self-supervised keypoint discovery in 3D from multi-view videos of behaving agents, without any keypoint or bounding box supervision in 2D or 3D. Our method uses an encoder-decoder architecture with a 3D volumetric heatmap, trained to reconstruct spatiotemporal differences across multiple views, in addition to joint length constraints on a learned 3D skeleton of the subject. In this way, we discover keypoints without requiring manual supervision in videos of humans and rats, demonstrating the potential of 3D keypoint discovery for studying behavior.
translated by 谷歌翻译
Neurosymbolic Programming (NP) techniques have the potential to accelerate scientific discovery. These models combine neural and symbolic components to learn complex patterns and representations from data, using high-level concepts or known constraints. NP techniques can interface with symbolic domain knowledge from scientists, such as prior knowledge and experimental context, to produce interpretable outputs. We identify opportunities and challenges between current NP models and scientific workflows, with real-world examples from behavior analysis in science: to enable the use of NP broadly for workflows across the natural and social sciences.
translated by 谷歌翻译
机器人系统的参数调整是一项耗时且具有挑战性的任务,通常依赖于人类操作员的领域专业知识。此外,由于许多原因,现有的学习方法不适合参数调整,包括:缺乏“良好机器人行为”的明确数值指标;由于依赖现实世界实验数据而导致的数据有限;以及参数组合的较大搜索空间。在这项工作中,我们提出了一种开源MATLAB偏好优化和用于系统探索高维参数空间的机器人工具箱(Polar)的学习算法,该算法使用基于人类的基于人类偏好的学习。该工具箱的这个目的是系统,有效地实现两个目标之一:1)优化人类操作员偏好的机器人行为; 2)学习操作员的基本偏好格局,以更好地了解可调参数和操作员偏好之间的关系。极性工具箱仅使用主观反馈机制(成对的偏好,共同反馈和序数标签)来实现这些目标,以推断出贝叶斯后验,而不是基本的奖励功能决定用户的偏好。我们证明了工具箱在模拟中的性能,并介绍了基于人类偏好的学习的各种应用。
translated by 谷歌翻译
现实世界的行为通常是由多种代理之间复杂的相互作用来塑造的。为了可靠地研究多代理行为,无监督和自我监督的学习的进步使从轨迹数据中学到了各种不同的行为表示。迄今为止,还没有一组统一的基准测试,可以在广泛的行为分析设置中进行定量和系统地比较方法。我们的目的是通过引入来自现实世界行为神经科学实验的大规模,多代理轨迹数据集来解决这一问题,该数据集涵盖了一系列行为分析任务。我们的数据集由来自通用模型生物的轨迹数据组成,其中有960万帧的小鼠数据和440万帧的飞行数据,在各种实验环境中,例如不同的菌株,相互作用的长度和光遗传学刺激。框架的子集还包括专家注销的行为标签。我们数据集的改进对应于跨多种生物的行为表示,并能够捕获常见行为分析任务的差异。
translated by 谷歌翻译
我们研究具有度量状态和行动空间的确定性马尔可夫决策过程(MDP)的政策优化问题,我们称为公制策略优化问题(MPOPS)。我们的目标是建立有关MPOP的适当性的理论结果,这些结果可以表征实际相关的连续控制系统。为此,我们定义了一类称为紧凑型MPOPS(CR MPOPS)的特殊类MPOP,它们足够灵活,可以捕获机器人系统的复杂行为,但特定于使用动态编程方法(例如Value Iteateration)允许解决方案。我们展示了如何使用前向不变性到达CR-MPOP。我们进一步表明,我们对CR-MPOP的理论结果可用于表征反馈可线化的控制仿射系统。
translated by 谷歌翻译
我们使用线性时间逻辑(LTL)约束研究策略优化问题(PO)。LTL的语言允许灵活描述可能不自然的任务,以编码为标量成本函数。我们将LTL受限的PO视为系统框架,将任务规范与策略选择解耦,以及成本塑造标准的替代方案。通过访问生成模型,我们开发了一种基于模型的方法,该方法享有样本复杂性分析,以确保任务满意度和成本最佳性(通过减少到可达性问题)。从经验上讲,即使在低样本制度中,我们的算法也可以实现强大的性能。
translated by 谷歌翻译
神经科学家和神经工具长期以来一直依赖多电极神经记录来研究大脑。但是,在典型的实验中,许多因素损坏了来自单个电极的神经记录,包括电噪声,运动伪像和制造错误。当前,普遍的做法是丢弃这些损坏的录音,减少已经有限的数据,难以收集。为了应对这一挑战,我们提出了深层神经插补(DNI),这是一个从跨空间位置,天和参与者中收集的数据中学习的框架,以从电极中恢复缺失值。我们通过线性最近的邻居方法和两个深层生成自动编码器探索我们的框架,证明了DNI的灵活性。一位深度自动编码器单独建模参与者,而另一个则扩展了该体系结构以共同建模。我们评估了12名用多电极内电图阵列植入的人类参与者的模型;参与者没有明确的任务,并且在数百个记录小时内自然行为。我们表明,DNI不仅恢复了时间序列,还可以恢复频率内容,并通过在科学相关的下游神经解码任务上恢复出色的性能来进一步确立DNI的实际价值。
translated by 谷歌翻译
权重规范$ \ | w \ | $和保证金$ \ gamma $通过归一化的保证金$ \ gamma/\ | w \ | $参与学习理论。由于标准神经净优化器不能控制归一化的边缘,因此很难测试该数量是否与概括有关。本文设计了一系列实验研究,这些研究明确控制了归一化的边缘,从而解决了两个核心问题。首先:归一化的边缘是否总是对概括产生因果影响?本文发现,在归一化的边缘似乎与概括没有关系的情况下,可以与Bartlett等人的理论背道而驰。(2017)。第二:标准化边缘是否对概括有因果影响?该论文发现是的 - 在标准培训设置中,测试性能紧密跟踪了标准化的边距。该论文将高斯流程模型表示为这种行为的有前途的解释。
translated by 谷歌翻译
控制屏障功能(CBF)已被证明是非线性系统安全至关重要控制器设计的强大工具。现有的设计范式不能解决理论(具有连续时间模型的控制器设计)和实践(所得控制器的离散时间采样实现)之间的差距;这可能导致性能不佳,并且违反了硬件实例化的安全性。我们提出了一种方法,通过将采样DATA对应物合成与这些基于CBF的控制器的方法,使用近似离散的时间模型和采样DATA控制屏障函数(SD-CBFS)。使用系统连续时间模型的属性,我们建立了SD-CBF与采样数据系统的实际安全概念之间的关系。此外,我们构建了基于凸优化的控制器,该控制器正式将非线性系统赋予实践中的安全保证。我们证明了这些控制器在模拟中的功效。
translated by 谷歌翻译
将动态机器人带入野外,需要平衡性能和安全之间。然而,旨在提供强大安全保证的控制器通常会导致保守行为,并调整这些控制器,以找到性能和安全之间的理想权衡通常需要域专业知识或仔细构造的奖励功能。这项工作提出了一种设计范式,用于系统地实现平衡性能和强大安全性的行为,通过将基于安全感知的基于偏好(PBL)与控制屏障功能(CBF)集成来实现平衡性能和鲁棒安全性。融合这些概念 - 安全感知的学习和安全关键控制 - 提供了一种在实践中实现复杂机器人系统的安全行为的强大手段。我们展示了这种设计范式的能力,以实现在硬件上的模拟和实验上的四足机器人的安全和表演感知的自主操作。
translated by 谷歌翻译